
or o : r  h~ 
r [ i ,  t]  = r [!,o] § ~ -  ~,ohz § o~ ~,oW" 

The value of the second derivative is found direct ly  f rom the equation for  F extended to the boundary. A 40 • 
40 grid uniform over  z and nonuniform over  r was used for  the solution in the centra l  region. The ~'-variation 
of the computing step was specified in the following way: 

r [i] : h r [0] (i -t- a) ~ -- i or h r [i -~ 1] : (1 -]- a )  h r [i]. 

For  the computat ions d iscussed above ~ = 0.024. 

The author expresses  g ra t i tude  to M. A. Gol 'dshtik for  attention to the work. 

lo 
2. 

3. 

4o 

5. 
6. 

7. 

L I T E R A T U R E  C I T E D  

H. Greenspan, The Theory  of Rotating Liquids, Cambridge Universi ty P r e s s  (1968). 
M. A. Gol'dshtik, "An approximate  solution of the problem of laminar  twist flow in a c i rcu la r  tube," 
Inzh . -F iz .  Zh., 1, No. 3 (1959). 
N. F. Budunov, "Investigation of discontinuous and twist flows of an impress ib le  fluid in channels 
of variable c r o s s  section, n Author ' s  Abs t rac t  of Candidate 's  Dissertat ion,  Institute of Hydrodynamics,  
Siberian Branch of the Academy of Sciences of  the USSR, Novosibirsk (1973). 
M. A. Gol 'dsht ik,  G. P. Zykin, Yu. I. Petukhov, and V. N. Sorokin, nDetermination of the radius o f a a a i r  
vortex in a centrifugal  sp rayer , "  Zh. Prikl .  Mekh. Tekh. Fiz.,  No. 4 (19 69). 
G~ K. Batehelor,  In t roduct ionto  Fluid Dynamics [Russiantranslat ion],  Mir, Moscow (1973). 
M. A. Gol 'dshtik,  "A contr ibut ionto the theory  of the Rank effect (twist flow of gas in a vor tex chamber),  
Izv. Akad Nauk SSSR, Mekh. Mashinostr . ,  No. 1 (1963). 
Z. V. Boldyreva and T. V. Kuskova, "On the problem of fluid vlow viscous incompress ib le  past a sphere," 
in: Numer ica l  Methods in Continuum Mechanics [in Russian], No. 15, VTs, MGU, Moscow (1970). 

S E C O N D A R Y  F L O W S  B E S I D E  A 

IN A C O M P L E X  S O U N D  F I E L D  

C Y L I N D E R  

V .  B.  R e p i n  UDC 534.222.2 

It is known that steady flows a r i se  beside a solid surface in the presence  of a sound field which 
can to a ce r ta in  extent exert  an effect on the p roces se s  of heat and mass  exchange [1-3] .  As a 
rule,  all papers  f rom this a rea  re fe r  to the case  in which one can represent  the sound f ie ldin  
the fo rm of a single wave. However, situations a re  often encountered in prac t ice  in which the 
sound field is complex; i.e., it consis ts  of severa l  vibrations whose amplitudes and frequencies  
a re  unlike in the general  case .  The secondary  flows which fo rm beside a c i r cu la r  cyl inder  
placed in a complex sotmdfield a re  investigated in this paper .  

Let n plane waves with the following p a r a m e t e r s  encounter  a c i r cu la r  cyl inder  of radius R: A n is the 
velocity amplitude of the acoustic shift in the n-th wave, ~n  is the frequency,  a n is the point of encounter  of 
the wave with the cyl inder ,  and ~n is the phase of the wave. Let us consider  the case  in which the radius of 
the cyl inder  is significantly less  than the wavelength; then the flow beside the cyl inder  can be t reated as in- 
compress ib le .  

The N a v i e r - S t o k e s  equation describing the motion of a viscous incompress ib le  liquid has the form 

0 0 (r v2r = �89 H2V4~, (1) 
W (V~p) - ~ ~ ,  -5) 

Kazan ' .  Trans la ted  f rom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 56-64, No- 
vember -December ,  1977. Original ar t ic le  submitted November  15, 1976. 

0021-8944/77/1806- 0779 $07.50 �9 1978 Plenum Publishing Corporat ion 779 



- 2 81 , t O , i # ~  
where  V ---- - i~  -bT-~T~T ~- O(,, V~C)/a(O, r) is the Jacobian determinant ;  e = s l / R ;  H = S a c / R ;  
~Sa c = (2v /~ l ) l /2 ;and  s I is the (t + r)' o0" ; ampli tude of the acoustic  shift in the f i r s t  wave. The s t r e a m  function r is de-  
fined a s  

u = O,/Or,  v = - - t / ( l  § r).Or (2) 

The boundary conditions a r e  of the fo rm  

r = O~]Or ~ 0 a t  r ---- 0 ;  

, +(bS+,,',,) .+ " (3) ~-,,, 
+ = ( i §  2; Ba sin (O --  aa) + +, r + o o ,  

h = i  

where  Bk=Ak/A 1 and bk= (Wk/Wl)l/2. . 

Equations (1)-(3) a r e  wr i t t en  in the following dimensionless  var iab les :  

r = ( r - -  R ) / R ,  ~p = ~p/AxR, t = ~r r (4) 

Let  us cons ide r  the case  in which the following conditions a r e  fulfilled: 
<< i ;  (5) 

H << 1. (6) 

We will solve the p rob lem by using the method of spliced asymptot ic  expansions [4, 5]. Let  us divide 
the ent i re  region  occupied by the liquid into two regions:  an in te r ior  one (with a cha rac t e r i s t i c  s ize 6ac in 
the d i rec t ion  perpend icu la r  to the cyl inder  surface)  and an ex t e r io r  one {with a cha rac t e r i s t i c  s ize  R). The 
ex t e r io r  var iables  a r e  defined by Eq.  (4), and the in t e r io r  ones a r e  wr i t ten  in the fo rm 

,~ = ~ - R ) / S a r  ~ = ~,/A~a.'~r t =%, ' .  

The re la t ion  between the in te r io r  and ex t e r i o r  var iables  has the fo rm 

by use of the condition (6). 
we obtain 

(7) 

r -~ H~l, ~P = Hm, (8) 

where  ~ and r a re  m e a s u r e d  f rom the cy l inder  sur face  and 0 is measu red  f rom the encounter  point of the f i r s t  
wave (A O. 

Let us cons ider  the e x t e r i o r  region.  In view of condition (5) the solution will be sought by the method of 
success ive  approximations:  

, = r + ~ , ( ,  § 0(82). (9) 

Having substi tuted (9) into (1) and col lected t e r m s  with identical  powers  of e, we obtain 

a t ~(V2r ) a (r v~,(0)) = �89 (IL (10) 
o-T (V2* (~ = ~ H~V4r (~ o (0, ~) 

Although Eqs .  (10) a r e  l inear ,  the i r  solutions,  wr i t ten  with the use of Hankel functions, a re ,  however,  
r a t h e r  awkward, which hinders  subsequent analys is .  The re fo re ,  we r ep re sen t  r in the fo rm  

,(i)  -~ r § H~p(~) § 0(H2), ~ =  0, t .... (11) 

Having substi tuted (11) into (10) and col lected t e r m s  with identical  powers  of H, 

(12) 

o-7 (V~r176176 = 0, (V2r = 0, . . ,  

a (v~, (~o))  f a ( , ( o o )  v~,(oo))l 
--at - t  7 ~ . ~  JH = ~ '  

o (..~,h('t)~ /O1r176176 V~, (~ 0 (r V,,(00))I 
0---/ , v  v i i  ! - -  [" - ~ .  ~ -~- " ~ . ' - ~ )  JH = 0 ,  

0 (r vW0~)) o (,(o,), v~r o (r vWO0))~ t 
O (0, r) + 0 (0, r) + " ~ - ~ : - ~  ) s t  : -~  Va~P(l~ 

Using the second boundary condition (3), one can show that  the function r does not contain a componentwhich 
is t ime-independent ;  t he re fo re ,  Eqs .  (12) will take the fo rm 

V~*(~ 0, ] = 0, i ,  2 . . . ;  (13) 

• (v~,~ ~') = o; v , , ( 2  ) o, at, 

where  r176176 r)+r176 r ,  t). 

780 



For  s impl ic i ty  we will cons ider  the sound field subsequently to consis t  of two plane waves.  Then the 
solutions of Eqs .  (i3) should sa t is fy  the following boundary conditions: 

~;(0j) = l (  1 + r) [sin 0e ~t + B sin (0 -- a) e~(b't+~)], j = 0, (14) 
[ bounded, j =#= 0, 

r (10)___ bounded as r--- ~ ,  and the ex t e r io r  solution should be asymptot ical ly  spliced with the in te r io r  solution 

as r - ~ 0 ;  i .e . ,  

$(0) -~ Urn(co). (15) 

Let us consider the interior region. To this end let us rewrite Eq. (1) in the interior variables (7) 

o (~ (~, o, t, o{~,H)' v~.~{~,~) O, t, H))II = � 8 9  
T-~ (V2rn (~, O, t, H)) - -8  (~, 0, t, H). (16) 

Similarly to the exterior solution, we will seek the solution in the interior region in the form of a series: 

r (~o) + rn~0) rn = mr176176 + 0 (H) + e trust + 0 (H)] + 0 (e2). (17) 

It has been shown in [5] that an expansion of the type (11) and (17) can be applied only in the case  inwhieh 
the Reynolds number  calculated f rom the velocity of the steady secondary flow is small  (Rest =A ~/wv<< 1). The 
case  of Rest  >> 1 will be d iscussed  separa te ly .  

Having substi tuted (17) and pe r fo rmed  the same operations as in the der ivat ion of Eqs.  (13), we obtain 

rnc00) I ~ (o0) (18a) ~ 1 ~ -  -~"~ln~l ~ 0 ;  

m(~~ ~ 2"-(~176176 _(o0)_(o0)\ (18b) 

The functions rnij should sa t is fy  the boundary conditions 

m ( i j )=OrnCih/aT 1 = 0  at T] ---- 0, i, ] = 0 ,  :[ .... (19) 

and be asymptot ica l ly  spliced to the ex t e r i o r  solution. 

The solutions of the f i r s t  equation of (13) andofEq .  (18a) which sa t i s fy the  conditions (14), (15), and (19) a re  of 
the form 

[ I i Real [sin 0 .  e ~' + B sin (0 -- a) .  ei(b't+~)], (20) ,(00) = t + r -- Y-4-7 

m(~176 ~ 2 Real [sin 0 �9 ~1 (~l) e~t + B b - ~  sin (0 -- a) �9 ~1 (b~l) e~(~'t+~)] (21) 

fo r  the e x t e r i o r  and in te r io r  regions,  respec t ive ly ,  where  

~ , (~ )  = rl + ~ [e-(~+o~ -- 1]. 

P r i o r  to s tar t ing  the sea rch  for  a steady component of the s t r e am  function, we note that the right-hand 
side in Eq. (18b) will have a different  analytic fo rm depending on the re la t ion between the f requencies  of the 
vibrat ions of the two waves.  

Let us cons ider  the case  of unlike f requencies  (b ~1). Using (21) and having calculated the a v e r a g e t e r m s ,  
Eq. (18b) is wr i t ten  in the fo rm 

m(~O) = 2 s i n 2 0  . l z  (~l) + 2 B * b s i n 2 ( O - - a )  . ]x (b~l), (22) st  ~ n ~  

where  

f,(~) = e-C~+~)~ + e-(~-~)~ + i~le-(*+~)~ _ hle-(~-i)n __ 2e-~n. (23) 

The solutions of the th i rd  equation of (13) and of Eq. (22) which sa t is fy  the conditions (14), (15), and (19) a re  of the form 

m~ ~ = dp~ (~l) sin 20 + B~b--adP~ (b~l) sin 2 (0 --  a): (24) 

,(~o) 3 [ i t] [sin 20 + B~b - ~  sin 2 (0 --  a)] (25) st = ~  ( t+r)~  

for  the in te r io r  and e x t e r i o r  regions,  respec t ive ly ,  where  

. _ _ _  ~ ~le--(~--~)~ -- ~ ~le--O+i)n -- ~ (26) (~i (I]) ---- ~13 __ "23 ~ - -  e_(i+i), ~ _ 3 --2~ e_(i_i)n + -2 Z 4" e--2~" 
�9 2 

It follows f rom Eqs.  (24) and (25) that in the case  of unlike f requencies  the steady flow is a superposi t ion 
of secondary  flows cor responding  to each vibrat ion separa te ly .  
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Fig. 1 

The s t reaml ines  of the steady flow in the in ter ior  region a re  shown in Fig. 1 for  a var ia t ion of the r e l a -  
t ive amplitude B f rom 0.05 to 10.0 (r162 a =~/4). It is evident that the steady flow for  small  values of B 
(Fig. la,  B = 0.05) is determined by the f i rs t  vibrat ion and resembles  in its nature the flow descr ibed by Schlicht- 
ing [6]. As the amplitude of the second vibrat ion increases ,  the nature of the flow is significantly al tered.  One 
can note those situations in which closed s t reaml ines  a re  absent in the in ter ior  region (Fig. lb  and c where 
B=0.4  and 0.8). Upon a fur ther  increase  in B the nature of the steady flow is determined by the p a r a m e t e r s  
of the second vibrat ion (Fig. ld, B= 10.0). 

Thus, the s t ruc tu re  of the steady secondary  flow in the case  under discuss ion is more  complex than in 
the Schlichting problem.  However,  one can predic t  the nature of the flow without resor t ing  to the  aid of a c o m -  
pu te r  but investigating only the posi t ion of the branch lines. By branch line is understood a s t reaml ine  at 
whose in te rsec t ion  the tangential  component of the velocity field of the steady flow changes sign. 

Thus, near  the sur face  one can, by expanding (24) into a Taylor  se r i e s  and res t r ic t ing  oneself to a quad- 
rat ic  t e r m ,  derive the following express ion  for  determinat ion of the angular  coordinate of the branch line of 
the in ter ior  flow (the in te r ior  branch line): 

i arctg[ B~b--isin2a ] ~n =- + -~-, n = OA . . . .  (27) 
0 ~ t + B~b - 1 cos 2a 

Similar ly,  we obtain a re la t ion f rom (25) for  determinat ion of the angular  coordinate of the branch line of the 
ex ter ior  flow (the ex te r ior  branch line) 

t " [ B2b--2 sin 2a ] ~n 
0 = ~- arctg [ i -~- B~b--2 cos 2aJ + "~-' n = 0,1 . . . ,  (28) 

It is evident f rom a c ~ 1 7 6 1 7 6  (27) and (28) that the ex te r ior  and in ter ior  branch lines do not coincide with 
each other,  while they do coincide in the Schlichting problem.  Coincidence of the  ex te r ior  and inter ior  branch 
lines will be observed in our  case  ei ther  when B = 0 or  % which cor responds  to a s imple sound field, or  when 
a = i n / 2 .  Consequently, the s t ruc tu re  of the flow with these p a r a m e t e r s  will be the same as in [6]. We note 
that the pa t te rn  of the steady flow is repeated af ter  ~/2.  

Let us cons ider  the case  of identical f requencies  (b = 1). Then Eq. (18b) is wri t ten in the fo rm 

m(tO) - _ 2L (0)/1 (~]) -~" ~ B  sin a .  sin cp f.~ (~ l ) ,  ( 2 9 )  St  11~1~ - -  

where 

L(O) = sin 20 + B 2 sin 2(0 --  a) + 2B sin (20 - -  a).cos (p; (30) 

]~01) = 2e-~" --  e-'(l+~)~ --  e-(1-~)~ -{- TI e-x(l+~)n ~- ~le-(1-~)n,? and fl0?) is defined by Eq. (23). 

fo rm 
The solutions o f t h e t h i r d  equation of (13) and of Eq. (29) which sa t i s fy the  cond:ttions (14), (15), and (19) are  of the 
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ra i~ L ( O ) ( I ) l O l ) + B s i n a .  sin q~ �9 qbo (~l); (31) 
S t  ~ 

t ! ]"  L (0)--  3Bln( i  + r ) .  s i na .  sin % (32) 

where  r r - 3 ~  - ( 1 - 2 i )  e-(l+i)~ - ( 1  +2i)e "(1-i)~? - r e  -(l+i)~ - ~ e  -(1-i)77 + l / a e - ~ ,  and r and L(0) a r e  de-  

fined by Eqs .  (26) and (30), r e spec t ive ly .  

Thus,  superpos i t ion  of s teady flows is not obse rved  in the ca se  of identical  f requencies ,  s ince a cont r ibu-  
t ion produced by the nonl inear  in te rac t ion  of two vibra t ions  in the in te r io r  region a p p e a r s  in Eqs.  (31) and (32). 

The s t r e a m l i n e s  of the s teady flow in the in te r io r  (left) and ex t e r io r  ( r igh t ) reg ions  a r e  shown in Fig. 2 
f o r  a va r i a t ion  of the d i f ference  in the phases  go between the two vibra t ions  (w 1 =w2, a =7r/2, A s =A2). It is 
evident that  when the v ibra t ions  occur  in phase ,  go =0 (Fig. 2a), then the .na ture  of the flow both in the ex t e r io r  
and the in te r io r  regions  comple te ly  coincides  with the Schlichting flow [6]. Subsequently, the pa t t e rn  is qual i -  
ta t ive ly  a l t e r ed  (as go inc reases ) :  In the in te r io r  reg ion  neighboring vor t i ces  r ecede  f rom the su r face  of the 
cy l inder  and d e c r e a s e  in s ize  r ight  down to comple te  d i sappearance  (Fig. 2b, go = r /6 ) ;  the upper  vor tex  a lso  
d e c r e a s e s  in s ize ,  but it is p r e s s e d  to the su r face  of the cy l inder .  Two closed vor t i ces  a p p e a r  in the ex t e r io r  
region whose s ize  d e c r e a s e s  as go i nc r ea se s ;  at the s a m e  t ime  a l a r g e - s c a l e  c i rcu la t ing  flow develops in the 
e x t e r i o r  and in te r io r  regions .  We note that  when go =90~ 2c) the pa t t e rn  obtained ag ree s  in nature  with 
the flow desc r ibed  by Longuet and Higgins [7], who t r e a t ed  this pa r t i cu l a r  ca se  to de sc r ibe  anomalous  oceanic 
cu r r en t s  which f o r m  around isola ted i s lands .  It has been  shown in [8] that the nature  of the Longue t -Higg ins  
flow does not depend on the number  Res t  and is a pecu l i a r  analog of a Poiseui l le  flow. 

Let  us de te rmine  the posi t ion of the branch  l ines .  Having repeated  s i m i l a r  calcula t ions  as  in the d e r i v a -  
t ion of Eqs.  (27) and (28), we obtain 

t ( E ) 7 + ~ n ,  (33) 0 = ~ a r c s i n  ___-~cos7 + ~ -  

where  the plus s ign r e f e r s  to the in te r io r  b ranch  line and the minus s ign r e f e r s  to the ex t e r io r  one, andwhere  

: B s i n g - s i n a ;  C = % - ~ B c o s q ~ . c o s a + 2  t--B 2cos2a; E 

t 7 = a r c t g D + : ~ n ;  D = B c o s q ~ . s i n a + ~ B s i n 2 a .  

It follows f r o m  Eq. (33) that  the flow pa t t e rn  r epea t s  in r .  In addit ion both the in te r io r  and e x t e r i o r  branch  
l ines a l t e rna t e  not in ~/2, as  is obse rved  fo r  the case  of unlike f requencies ,  but t he i r  spat ia l  s epa ra t ion  de-  
pends on the p a r a m e t e r s  which c h a r a c t e r i z e  the complex  sound field.  We note that  such si tuations may  be 
rea l i zed  when the ex t e r i o r  and in te r io r  b ranch  l ines coincide:  B = 0 or  0% which co r r e sponds  to a s imple  sound 
field; a =rn ,  i .e . ,  the p ropaga t ion  l ines of the two waves  coincide; and go =~n, i .e. ,  the vibrat ions  occur  e i ther  
in phase  or  out of phase .  Consequently,  the nature of the flow in these  ca se s  a g r e e s  comple te ly  with theSch l ich t -  
ing flow [6]. One should a l so  note that  if [ E /C  cos  T[ > 1, then no branch  l ines at  all  exis t  and the s teady flow 
is a l a r g e - s c a l e  c i r cu la t ion  (a flow of this type  is shown in Fig. 2c). However,  if B = I ,  a =r ,  go =0, then the re  
is no s teady flow. This  is phys ica l ly  conf i rmed ,  s ince the c a s e  in quest ion c o r r e s p o n d s  to the p lacement  of 
the cyl inder  at a ve loci ty  node of a standing wave.  

Since a l a r g e - s c a l e  c i rcu la t ing  flow appea r s  nea r  the cyl inder  in the case  of identical  f requencies ,  a 
s teady momen t  of fo rces  ac ts  on the cy l inder  which is de te rmined  in the f o r m  

M = 4~tR(L/hac) (A1AJa)) sin a. sin ~. 

One can  convince onesel f  that  the t ime- independen t  momen t  of the fo rces  is equal to ze ro  in the case  in which 
a complex  soundfield  reduces  to a s imp le  one, i .e. ,  to the Schlichting p r o b l e m  [6]. As calculat ions have shown, 
no s teady fo rce  at all  ac ts  on the cy l inder  in the case  w 1 ~ w 2. 

The r e su l t s  p r e sen t ed  above a r e  desc r ibed  in Eule r ian  va r i ab les .  However ,  the exper imenta l  inves t iga-  
t ion of s econda ry  flows a r e  conducted, as  a rule ,  with the use  of labeled pa r t i c l e s  (the t rack ing  method), whose 
behav io r  is desc r ibed  in Lagrang tan  v a r i a b l e s ,  ff the Eule r ian  and Lagrang ian  descr ip t ions  give identical r e -  
sui ts  for  a s teady flow, then they d i f fe r  in the case  of nonsteady motion; i .e. ,  the s t r e a m l i n e s  (Eulerian v a r i -  
ables)  do not coincide with the pa r t i c l e  t r a j e c t o r i e s  (Lagrangian va r iab les ) .  It has been  shown in [9] that  the 
t r a j e c t o r y  of a pa r t i c l e  is re la ted  to the s t r e a m l i n e  of the secondary  flow by the equation 

@Lk = ~sEt k q- Fk, 
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Fig.  2 

w h e r e  

i f ;  , / 

�9 u E is the pu l s a t i on  ve loc i ty  in EUler ian  v a r i a b l e s  and k is the unit  v e c t o r  in the  z d i r ec t ion .  

By us ing Eqs .  (20) and (21), we obta in  in the  c a s e  of  unl ike f r e q u e n c i e s  

t �9 9 4 B2b_  3 sin 2 (0--a). (I) a (bTI) + O  (H) (34) IF=O(/ / ) ;  F =  ~ sin _0 �9 r (~)-- -~ 

in the  e x t e r i o r  and i n t e r i o r  r e g i o n s ,  r e s p e c t i v e l y ,  whe re  

: Oa(~l) ~ t + e -2u - -  e -(1+~)~ - -  e-(1-~)~ - -  i~le-(X+~)~ + i~e-(x-i)~. (35) 

[~ fo l lows f r o m  the  f i r s t  equat ion of  (34) that  the s t r e a m l i n e s  and p a r t i c l e  t r a j e c t o r i e s  co inc ide  wi th  an a c c u r a c y  of  
t o  t e r m s  o f t h e  o r d e r  O(tD, which is in a g r e e m e n t  with the  c a s e  of a s imp le  sound f ield [9]. 

In the  c a s e  of  ident ica l  f r e q u e n c i e s  we obtain 

t [ ~ - ] s i n q ~ - s i n a + O ( H ) ,  F =  ~ B  1- (l+r)~ 

i t F = ~ L (0) ~ 8  (~) - -  ~ B s in q~- sin a .  ~34 (3) + 0 (H) 

f o r  the  e x t e r i o r  and i n t e r i o r  r eg ions ,  r e s p e c t i v e l y ,  w h e r e  4~307) and L(0) a r e  defined by Eqs .  (35) and (30) and 

�9 q)a01) = 2 - -  4~1 + 2e -~n - -  2e -(~+~)n- 2e-(~-~)n-l-2~l e-(~+i)~ - -  2~1e-(1-~)~. 

Thus ,  the  s t r e a m l i n e s  and p a r t i c l e  t r a j e c t o r i e s  do not now coinc ide  in the  e x t e r i o r  r e g i o n  in the c a s e  of 
ident ica l  f r e q u e n c i e s .  However ,  a s  s u p p l e m e n t a r y  ca lcu la t ions  on a c o m p u t e r  have shown,  the  na tu re  of the  
f low in L a g r a n g i a n  v a r i a b l e s  does  not d i f fe r  s ign i f ican t ly  f r o m  the E u l e r i a n  d e s c r i p t i o n  e i t he r  in the  c a s e  of 
ident ica l  or~ unlike f r e q u e n c i e s .  

The  r e s u l t s  p r e s e n t e d  above  a r e  obtained on the a s s u m p t i o n  tha t  the  Reynolds  n u m b e r  ca lcu la ted  f r o m  
the  ve loc i ty  of the  s e c o n d a r y  flows is s m a l l .  When Res t -~ l ,  the  equa t ion  which  d e s c r i b e s  a s teady  f low in the 
e x t e r i o r  r e g i o n  is of the  f o r m  [5]  

7 8 4  



0 (%t, V~r ,) t 
0 (0. r) = ~ V %t" (36) 

A steady flow in the interior  region is described as before by Eq. (18b). It is evident that although a super-  
position of the secondary flows character is t ic  of each vibration is accomplished in the interior  region in the 
case of unlike frequencies,  no superposition takes place, however, in the exter ior  region when Rest -> 1 due to 
the nonlinearity of Eq. (36). 

We note in conclusion that the superposition of secondary flows both of the interior and exter ior  regions 
is not performed in the h igher-order  te rms [for example, O(e3)], independently of the size of Rest and the rela-  
tion between the frequencies.  

The author expresses his gratitude to V. A. Murga and I. I. Tyurlik for the computer calculations. 

1. 

2. 
3. 
4. 
5. 
6. 
7. 

8. 
9. 

L I T E R A T U R E  C I T E D  

V. E. Nakoryakov, A. P. Burdukov, A. M. Boldarev, and P. N. Terleev,  Heat and Mass Exchange in a 
Sound Field [in Russian], Izd. Inst. Teplofiz. SO A N SSSR, Novosibirsk (1970). 
W. P. Mason (editor), Physical Acoustics, Vol. 2B, Academic Press  (1965). 
The Physics and Engineering of Powerful Ultrasound [in Russian], Vol. 3, Nauka, Moscow (1970). 
J. D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell. 
N. Riley, "Oscillatory viscous flows. Review and extension, n J. Inst. Math. Applies., 3, 419-434 (1967). 
H. Schlichting, Boundary Layer Theory, 6th ed., McGraw-Hill (1968). 
Longuet and Higgins, "Steady current  induced by oscillations around islands," J. Fluid Mech., 4__~2, 
701-729 (1970). 
N. Riley, "Stirring of a viscous liquid," Z. Angew. Math Phys., 22, 645-653 (1971). 
W. P. Raney, J.  C. Corelly, and P. J. Westervelt,  "Acoustical streaming in the vicinity of a cylinder," 
J. Acoust. S.c.  Am., 2~6, No. 6, 1006-1014 (1954). 

785 


